Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Sci Total Environ ; 921: 171168, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38401734

RESUMEN

Fine roots are the primary organ of tree species in water and nutrient acquisition, and are the major contributor of forest soil organic carbon (C). However, it remains largely unknown how fine root growth dynamics and vertical distribution respond to long-term nitrogen (N) enrichment, which prevents us from accurately evaluating forest C sequestration potential under N deposition. Here, we investigated the effects of nine-year N addition (0 and 10 g N m-2 year-1) on fine root nutrients, biomass, production, turnover rate and vertical distribution in three soil layers (0-10, 10-20 and 20-40 cm) of a Mongolian pine (Pinus sylvestris var. mongolica) plantation in the Keerqin Sandy Lands, Northeast China. We found that soil inorganic N was increased and Olsen-P was decreased by N addition. N addition increased fine root N, C:P and N:P ratios, but reduced fine root P and C:N ratio across all soil layers. N addition reduced fine root biomass in 0-10 cm soil layer but increased it in 20-40 cm soil layer. N addition accelerated fine root turnover rate in 0-10 cm soil layer, and increased fine root necromass across all soil layers. Moreover, N addition significantly enhanced biomass of ectomycorrhizal extraradical hyphae in the 0-10 cm soil layer. Redundancy analysis showed that variations of fine root traits were well explained by soil NO3--N in 0-10 and 10-20 cm soil layers, and by soil NH4+-N and Olsen-P in 20-40 cm soil layer. Collectively, our results highlight the shift from N limitation to P limitation of Mongolian pine plantations under long-term N addition, and suggest that changes in fine root growth and vertical distribution induced by N addition could accelerate belowground C allocation in Mongolian pine plantations.


Asunto(s)
Pinus , Suelo , Nitrógeno/análisis , Carbono/análisis , Bosques , Biomasa , Nutrientes , China , Raíces de Plantas/química
2.
Environ Sci Technol ; 57(25): 9174-9183, 2023 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-37311089

RESUMEN

Plastic film mulching and urea nitrogen fertilization are widely used in agricultural ecosystems, but both their long-term use may leave a negative legacy on crop growth, due to deleterious effects of plastic and microplastic accumulation and acidification in soil, respectively. Here, we stopped covering soil with a plastic film in an experimental site that was previously covered for 33 years and compared soil properties and subsequent maize growth and yield between plots that were previously and never covered with the plastic film. Soil moisture was about 5-16% higher at the previously mulched plot than at the never-mulched plot, but NO3- content was lower for the former when with fertilization. Maize growth and yield were generally similar between previously and never-mulched plots. Maize had an earlier dough stage (6-10 days) in previously mulched compared to never-mulched plots. Although plastic film mulching did add substantial amounts of film residues and microplastic accumulation into soils, it did not leave a net negative legacy (given the positive effects of the mulching practice in the first place) for soil quality and subsequent maize growth and yield, at least as an initial effect in our experiment. Long-term urea fertilization resulted in a pH decrease of about 1 unit, which bring a temporary maize P deficiency occurring in early stages of growth. Our data add long-term information on this important form of plastic pollution in agricultural systems.


Asunto(s)
Plásticos , Suelo , Suelo/química , Zea mays , Nitrógeno/análisis , Microplásticos , Ecosistema , Agua , Agricultura , Urea , Fertilización , China
3.
Oecologia ; 197(2): 523-535, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34542674

RESUMEN

Forest dynamics are shaped by both abiotic and biotic factors. Trees associating with different types of mycorrhizal fungi differ in nutrient use and dominate in contrasting environments, but it remains unclear whether they exhibit differential growth responses to local abiotic and biotic gradients where they co-occur. We used 9-year tree census data in a 25-ha old-growth temperate forest in Northeast China to examine differences in tree growth response to soil nutrients and neighborhood crowding between tree species associating with arbuscular mycorrhizal (AM), ectomycorrhizal (EM), and dual-mycorrhizal (AEM) fungi. In addition, we tested the role of individual-level vs species-level leaf traits in capturing differences in tree growth response to soil nutrients and neighborhood crowding across mycorrhizal types. Across 25 species, soil nutrients decreased AM tree growth, while neighborhood crowding reduced both AM and EM tree growth, and neither soil nor neighbors impacted AEM tree growth. Across mycorrhizal types, individual-level traits were stronger predictors of tree growth than species-level traits. However, most traits poorly mediated tree growth response to soil nutrients and neighborhood crowding. Our findings indicate that mycorrhizal types strongly shape differences in tree growth response to local soil and crowding gradients, and suggest that including plant-mycorrhizae associations in future work offers great potential to improve our understanding of forest dynamics.


Asunto(s)
Micorrizas , Bosques , Nutrientes , Raíces de Plantas , Suelo , Microbiología del Suelo , Árboles
4.
Nat Commun ; 11(1): 286, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31941904

RESUMEN

A prominent tree species coexistence mechanism suggests host-specific natural enemies inhibit seedling recruitment at high conspecific density (negative conspecific density dependence). Natural-enemy-mediated conspecific density dependence affects numerous tree populations, but its strength varies substantially among species. Understanding how conspecific density dependence varies with species' traits and influences the dynamics of whole communities remains a challenge. Using a three-year manipulative community-scale experiment in a temperate forest, we show that plant-associated fungi, and to a lesser extent insect herbivores, reduce seedling recruitment and survival at high adult conspecific density. Plant-associated fungi are primarily responsible for reducing seedling recruitment near conspecific adults in ectomycorrhizal and shade-tolerant species. Insects, in contrast, primarily inhibit seedling recruitment of shade-intolerant species near conspecific adults. Our results suggest that natural enemies drive conspecific density dependence in this temperate forest and that which natural enemies are responsible depends on the mycorrhizal association and shade tolerance of tree species.


Asunto(s)
Bosques , Plantones/fisiología , Árboles/fisiología , Animales , China , Herbivoria , Insectos , Micorrizas , Árboles/microbiología
5.
New Phytol ; 213(3): 1440-1451, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27678253

RESUMEN

Compared with ectomycorrhizal (ECM) forests, arbuscular mycorrhizal (AM) forests are hypothesized to have higher carbon (C) cycling rates and a more open nitrogen (N) cycle. To test this hypothesis, we synthesized 645 observations, including 22 variables related to below-ground C and N dynamics from 100 sites, where AM and ECM forests co-occurred at the same site. Leaf litter quality was lower in ECM than in AM trees, leading to greater forest floor C stocks in ECM forests. By contrast, AM forests had significantly higher mineral soil C concentrations, and this result was strongly mediated by plant traits and climate. No significant differences were found between AM and ECM forests in C fluxes and labile C concentrations. Furthermore, inorganic N concentrations, net N mineralization and nitrification rates were all higher in AM than in ECM forests, indicating 'mineral' N economy in AM but 'organic' N economy in ECM trees. AM and ECM forests show systematic differences in mineral vs organic N cycling, and thus mycorrhizal type may be useful in predicting how different tree species respond to multiple environmental change factors. By contrast, mycorrhizal type alone cannot reliably predict below-ground C dynamics without considering plant traits and climate.


Asunto(s)
Ciclo del Carbono , Bosques , Micorrizas/metabolismo , Ciclo del Nitrógeno , Biomasa , Carbono/metabolismo , Geografía , Nitrógeno/metabolismo , Hojas de la Planta/fisiología
6.
PLoS One ; 8(10): e76334, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24143184

RESUMEN

Understory vegetation plays a crucial role in carbon and nutrient cycling in forest ecosystems; however, it is not clear how understory species affect tree litter decomposition and nutrient dynamics. In this study, we examined the impacts of understory litter on the decomposition and nutrient release of tree litter both in a pine (Pinus sylvestris var. mongolica) and a poplar (Populus × xiaozhuanica) plantation in Northeast China. Leaf litter of tree species, and senesced aboveground materials from two dominant understory species, Artemisia scoparia and Setaria viridis in the pine stand and Elymus villifer and A. sieversiana in the poplar stand, were collected. Mass loss and N and P fluxes of single-species litter and three-species mixtures in each of the two forests were quantified. Data from single-species litterbags were used to generate predicted mass loss and N and P fluxes for the mixed-species litterbags. In the mixture from the pine stand, the observed mass loss and N release did not differ from the predicted value, whereas the observed P release was greater than the predicted value. However, the presence of understory litter decelerated the mass loss and did not affect N and P releases from the pine litter. In the poplar stand, litter mixture presented a positive non-additive effect on litter mass loss and P release, but an addition effect on N release. The presence of understory species accelerated only N release of poplar litter. Moreover, the responses of mass loss and N and P releases of understory litter in the mixtures varied with species in both pine and poplar plantations. Our results suggest that the effects of understory species on tree litter decomposition vary with tree species, and also highlight the importance of understory species in litter decomposition and nutrient cycles in forest ecosystems.


Asunto(s)
Pinus sylvestris/metabolismo , Populus/metabolismo , Árboles/metabolismo , Biomasa , China , Pinus sylvestris/química , Pinus sylvestris/crecimiento & desarrollo , Populus/química , Populus/crecimiento & desarrollo , Especificidad de la Especie , Árboles/química , Árboles/crecimiento & desarrollo
7.
Ying Yong Sheng Tai Xue Bao ; 23(5): 1188-94, 2012 May.
Artículo en Chino | MEDLINE | ID: mdl-22919826

RESUMEN

A full factorial experiment was conducted to study the effects of understory removal and nitrogen addition (8 g x m(-2)) on the soil NO(3-)-N and NH(4+)-N concentrations, potential net nitrogen mineralization rate (PNM) and nitrification rate (PNN), microbial biomass C (MBC) and N (MBN), MBC/MBN, urease and acid phosphomonoesterase activities, and Olsen-P concentration in a Pinus sylvestris var. mongolica plantation in Keerqin Sandy Land during a growth season. Understory removal decreased the soil NH(4+)-N concentration, PNM, MBC, and MBN/MBN significantly, increased the soil Olsen-P concentration, but had little effects on the soil NO(3-)-N concentration, PNN, and urease and acid phosphomonoesterase activities. Nitrogen addition increased the soil NO(3-)-N concentration, PNM and PNN significantly, but had little effects on the other test properties. The interaction between understory removal and nitrogen addition had significant effects on the soil NH(4+)-N concentration, but little effects on the soil NO(3-)-N concentration. However, the soil NO(3-)-N concentration in the plots of understory removal with nitrogen addition was increased by 27%, compared with the plots of nitrogen addition alone, which might lead to the leaching of NO3-. It was suggested that understory vegetation could play an important role in affecting the soil chemical and biological properties in Mongolian pine plantations, and hence, the importance of understory vegetation should not be neglected when the forest management and restoration were implemented.


Asunto(s)
Ecosistema , Agricultura Forestal/métodos , Nitrógeno/química , Pinus sylvestris/crecimiento & desarrollo , Microbiología del Suelo , Suelo/química , Artemisia/efectos de los fármacos , Artemisia/crecimiento & desarrollo , Cannabis/efectos de los fármacos , Cannabis/crecimiento & desarrollo , Carbono/análisis , China , Conservación de los Recursos Naturales , Clima Desértico , Fertilizantes , Nitrógeno/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...